ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Frobenius norm
    Mathematics/Linear algebra 2023. 9. 19. 12:55
    ๋ฐ˜์‘ํ˜•

    Frobenius norm ๊ณผ Trace

    Frobenius norm์„ trace๋กœ ์ •์˜ํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์–ด์„œ ๊ฐ€์ ธ์™€ ๋ดค๋‹ค.

     

    ์šฐ์„  Frobenius norm ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค. 
    $$\left\|A \right\|_{F}=\sqrt{\textrm{Tr}(A^{T}A)}$$

     

    (a) ๋ฅผ ๋ณด๋ฉด A๋Š” nxn ์˜ ์ •๋ฐฉํ–‰๋ ฌ์ž„์„ ๊ฐ€์ •ํ–ˆ๋‹ค.
    $$\left\|A \right\|_{F}=\sqrt{\textrm{Tr}(AA^{T})}=\sum_{i}^{n}\begin{bmatrix}
    A^{T}A\end{bmatrix}_{ii}=\sum_{i}^{n}(\sum_{j}^{n}A_{ij}^{T}A_{ji})=\sum_{i,j}^{n}A_{ij}^{2}$$
    ์ •์˜์— ๋”ฐ๋ผ์„œ ์‹์„ ์ „๊ฐœํ•ด๋ณด๋ฉด frobenius norm ์ด ๋ชจ๋“  ์›์†Œ์˜ ์ œ๊ณฑํ•ฉ์˜ ์ œ๊ณฑ๊ทผ (Euclidean norm) ์œผ๋กœ ์ •์˜๋จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. 
     
    (b) ์—์„œ๋Š” $U$ ์™€ $V$ ๊ฐ€ Orthogonal matrix๋ผ๊ณ  ๊ฐ€์ •ํ–ˆ๋‹ค.
    $$\left\|UA \right\|_{F}=\textrm{Tr}(UA)^{T}(UA)=\textrm{Tr}(A^{T}U^{T}UA)=\textrm{Tr}(A^{T}A)$$
    $$\left\|AV \right\|_{F}=\textrm{Tr}(AV)^{T}(AV)=\textrm{Tr}(AV)(AV)^{T}=\textrm{Tr}(AVV^{T}A^{T})=\textrm{Tr}(A^{T}A)$$
    ** Trace ์˜ ์„ฑ์งˆ์— ๋”ฐ๋ผ 
    Tr(AB)=Tr(BA) ๊ฐ€ ์„ฑ๋ฆฝํ•˜๊ณ ,
    ** Orthogonal matrix ์˜ ์„ฑ์งˆ์— ๋”ฐ๋ผ
    $U^{-1}=U^{T}$ ๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.
     
    (c) ์—์„œ๋Š” A๊ฐ€ r ๊ฐœ์˜ singular value๋ฅผ ๊ฐ€์ง„๋‹ค๊ณ  ํ–ˆ์œผ๋ฏ€๋กœ Rank ๊ฐ€ r ์ž„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. 
    singular value๋Š” ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋‚˜์—ด๋˜๋ฏ€๋กœ ๊ฐ€์žฅ ํฐ ๊ฐ’์€ $\sigma _{1}$ ์ผ ๊ฒƒ์ด๋‹ค. 
    singular value๋Š” SVD๋ฅผ ํ•จ์œผ๋กœ์จ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, $A=U\sum V^{T}$ ์ด๊ณ , 
    (b) ์—์„œ ์ฆ๋ช…ํ•œ ๋‚ด์šฉ์— ๋”ฐ๋ผ 
    $$\left\| A\right\|_{F}=\left\|U\sum V^{T} \right\|_{F}=\left\|\sum \right\|_{F}=\sqrt{\sigma _{1}^{2}+\cdots +\sigma _{n}^{2}}$$
    ํ–‰๋ ฌ A์˜ Frobenius norm์€ singular value ๋“ค์˜ l2-norm ๊ณผ ๊ฐ™์€ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. 
    ๋˜ํ•œ singular value ์ค‘ ๊ฐ€์žฅ ํฐ๊ฒƒ์€ ๊ฐ€์žฅ ์ฒซ ๋ฒˆ์งธ ๊ฐ’์ž„์„ ์•Œ๊ณ  ์žˆ๋‹ค. 
    $$\sigma _{\textrm{max}}(A)=\sigma _{1}$$
    $$\sqrt{\sigma _{1}^{2}+\sigma _{2}^{2}+\cdots+\sigma _{r}^{2} }\leq \sqrt{\sigma _{1}^{2}+\sigma _{1}^{2}+\cdots +\sigma _{1}^{2}}=\sqrt{r\sigma _{1}^{2}}=\sqrt{r}\sigma _{1}$$
     
     

Designed by Tistory.