-
์ค์นผ๋ผ, ๋ฒกํฐ๋ฅผ ํ๋ ฌ๋ก ๋ฏธ๋ถMathematics/Linear algebra 2023. 5. 3. 19:04๋ฐ์ํ
1. ์ค์นผ๋ผ๋ฅผ ํ๋ ฌ๋ก ๋ฏธ๋ถ
์ด ๊ฒฝ์ฐ๋ ํ๋ ฌ์ด ์ ๋ ฅ์ด๊ณ , ์ถ๋ ฅ๋๋ ํจ์๊ฐ ์ค์นผ๋ผ์ผ๋ ์ ์ฉ ๊ฐ๋ฅํ๋ค. $$\textbf{x}=\left [ \begin{matrix}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
\end{matrix} \right ]$$
$$d\textbf{x}=\left [ \begin{matrix}
dx_{11} & dx_{12} \\
dx_{21} & dx_{22} \\
\end{matrix} \right ]$$์ฌ๊ธฐ์์ $f$ ๋ผ๋ ์ค์นผ๋ผ ํจ์๋ฅผ ํ๋ ฌ $\textbf{x}$๋ก ๋ฏธ๋ถํ๊ณ ์ ํ๋ค.
์ํ๋ ๋ฏธ๋ถ๊ฐ์ ์ป์ผ๋ ค๋ฉด ์๊ฐ๋ณํ์จ $\\df$๋ฅผ $ d\textbf{x}=\left [ \begin{matrix}
dx_{11} & dx_{12} \\
dx_{21} & dx_{22} \\
\end{matrix} \right ]$ ์ $\frac{\partial f}{\partial \textbf{x}^{T}}=\left [ \begin{matrix}
\frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{21}} \\
\frac{\partial f}{\partial x_{12}} & \frac{\partial f}{\partial x_{22}} \\
\end{matrix} \right ]$ ๋ก ์ ํํํด์ผ ํ๋ค.$$df=\frac{\partial f}{\partial x_{11}}dx_{11}+\frac{\partial f}{\partial x_{12}}dx_{12}+\frac{\partial f}{\partial x_{21}}dx_{21}+\frac{\partial f}{\partial x_{22}}dx_{22}$$
$$d\textbf{x}\frac{\partial \textbf{f}}{\partial \textbf{x}^{T}}=\left [ \begin{matrix}
dx_{11} & dx_{12} \\
dx_{21} & dx_{22} \\
\end{matrix} \right ]\left [ \begin{matrix}
\frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{21}} \\
\frac{\partial f}{\partial x_{12}} & \frac{\partial f}{\partial x_{22}} \\
\end{matrix} \right ]=\left [ \begin{matrix}
\frac{\partial f}{\partial x_{11}}dx_{11}+ \frac{\partial f}{\partial x_{12}}dx_{12}& \\
& \frac{\partial f}{\partial x_{21}}dx_{21}+ \frac{\partial f}{\partial x_{22}}dx_{22} \\
\end{matrix} \right ] $$๋ฐ๋ผ์ $d\textbf{f}$๋ ์์์ ๋์ถํ ํ๋ ฌ์์ ๋๊ฐ์ฑ๋ถ์ ๋ํ trace๋ก ํํํ ์ ์๋ค.
$$\therefore d\textbf{f}=tr(d\textbf{x}\frac{\partial \textbf{f}}{\partial \textbf{x}^{T}})$$
2. ํ๋ ฌ์ ํ๋ ฌ๋ก ๋ฏธ๋ถ
๋ฒกํฐ๋ฅผ ๋ฒกํฐ๋ก ๋ฏธ๋ถ์ ํ ์ค ์๋ฉด ํ๋ ฌ์ ํ๋ ฌ๋ก๋ ๋ฏธ๋ถ๊ฐ๋ฅํ๋ค.
ํ์ง๋ง ์์ ์ฆ๋ช ๋ฐฉ์์ผ๋ก๋ ํ๊ณ๊ฐ ์๋ค. ๋ฐ๋ผ์ ํ๋ ฌ์ ๋ฒกํฐ๋ก ๋ฐ๊พผ ๋ค์(vectorize), ๋ฒกํฐ๋ฅผ ๋ฏธ๋ถํ์ฌ ๊ตฌํ๋ค.
<vectorize>
ํ๋ ฌ์ ๋ฒกํฐ๋ก ๋ฐ๊พธ์ด์ฃผ๊ธฐ ์ํด ํ๋ ฌ์ row vector๋ก ๋ง๋ ๋ค.
$$\textrm{vec}\left [ \begin{pmatrix}
x_{11} & x_{12} \\
x_{12} & x_{12} \\
\end{pmatrix} \right ]=\left [ \begin{matrix}
x_{11} & x_{12} & x_{21} & x_{22} \\
\end{matrix} \right ]$$$$\textrm{vec}\left [ \begin{pmatrix}
y_{11} & y_{12} \\
y_{12} & y_{12} \\
\end{pmatrix} \right ]=\left [ \begin{matrix}
y_{11} & y_{12} & y_{21} & y_{22} \\
\end{matrix} \right ]$$$$d\textrm{vec}\left( \textbf{F}\right) =d\textrm{vec}\left( \textbf{x}\right) \dfrac{\partial \textrm{vec}\left( \textbf{F}\right) }{\partial \textrm{vec}^{T}\left( \textbf{x}\right) }$$
2. ๋ฒกํฐ๋ฅผ ํ๋ ฌ๋ก ๋ฏธ๋ถ
์ด ๊ฒฝ์ฐ์๋ ํ๋ ฌ์ ๋ฒกํฐํ์์ผ ๋ฏธ๋ถ์ ๊ทธ๋๋ก ์ ์ฉํ๋ ๋ฐฉ๋ฒ์ผ๋ก ์ ๊ทผ ๊ฐ๋ฅํ๋ค.
์๋ฅผ ๋ค์ด $\textbf{y}=\textbf{x}\textbf{W}$๋ฅผ $\textbf{W}$๋ก ๋ฏธ๋ถํ๋ค๋ฉด?
์์์ $\textbf{y}=\left [ \begin{matrix}
y_{1} & y_{2} \\
\end{matrix} \right ],\textbf{x}=\left [ \begin{matrix}
x_{1} & x_{2} \\
\end{matrix} \right ],\textbf{W}=\left [ \begin{matrix}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
\end{matrix} \right ]$ ์ด๋ค.ํ๋ ฌ $\textbf{W}$๋ฅผ vectorize ํ๋ฉด $\textrm{vec}(\mathbf{w})=\left [ \begin{matrix}
w_{11} & w_{12} & w_{21} & w_{22} \\
\end{matrix} \right ]$ ์ด๋ค.$\mathbf{y}=[\begin{matrix}
y_{1} & y_{2} \\
\end{matrix}]=\left [ \begin{matrix}
x_{1} & x_{2} \\
\end{matrix} \right ]\left [ \begin{matrix}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
\end{matrix} \right ]=\left [ \begin{matrix}
x_{1}w_{11}+x_{2}w_{21} & x_{1}w_{12}+x_{2}w_{22} \\
\end{matrix} \right ]$๋ฐ๋ผ์ ๋ฏธ๋ถ ๊ฒฐ๊ณผ๋ ๋ค์๊ณผ ๊ฐ์ด ์ป์ ์ ์๋ค.
$$\frac{d\textbf{y}}{d\textbf{W}}=\frac{\partial \textbf{y}}{\partial \textrm{vec}^{\mathbf{T}}(\textbf{w})}=\left [ \begin{matrix}
x_{1} & 0 \\
0 & x_{1} \\
x_{2} & 0 \\
0 & x_{2} \\
\end{matrix} \right ]=\textbf{x}^{T}\bigotimes I_{2} \textrm{(Kronecker product)}$$'Mathematics > Linear algebra' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
Principal component analysis (0) 2023.05.29 Determinant์ ํน์ฑ - eigenvalue๋ค์ ๊ณฑ (0) 2023.05.28 ๊ฐ์ญํ๋ ฌ ์ ๋ฆฌ (0) 2023.05.14 ๋ค๋ณ์ ํจ์์ ๋ฏธ๋ถ (0) 2023.05.03