ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Receptive field
    AI\ML\DL/Deep learning theory 2023. 9. 15. 14:57
    ๋ฐ˜์‘ํ˜•
    In the context of artificial neural networks, the receptive field is defined as the size of the region in the input that produces the featres.
    Wikipedia

     

    3์ฐจ์›์œผ๋กœ ๋ฐฐ์—ด๋œ CNN ๋ ˆ์ด์–ด

    CNN์€ local operation(i.e., convolution, pooling)์„ ํ†ตํ•ด ์—ฌ๋Ÿฌ ๋ฒˆ ๋ ˆ์ด์–ด๋ฅผ ๊ฑฐ์น˜๋ฉด์„œ ์›๋ณธ ์ด๋ฏธ์ง€์˜ ์ ์  ์ถ”์ƒ์ ์ธ ํŠน์ง•์„ ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ์  ํŒจํ„ด์„ ์ธ์‹ํ•˜๋Š” ๋ฐ ๋‹ค๋ฅธ ์œ ํ˜•์˜ ์‹ ๊ฒฝ๋ง๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ์„ฑ๋Šฅ์ด ์ข‹๋‹ค.

    ํ›„๋ฐ˜์˜ ๋ ˆ์ด์–ด๋Š” ์ดˆ๋ฐ˜์˜ ๋ ˆ์ด์–ด๋ณด๋‹ค ์ด๋ฏธ์ง€์˜ ๋” ๋„“์€ ๋ถ€๋ถ„์„ ๋ณด๊ฒŒ ๋œ๋‹ค. 

     

    ์ด์ œ๋ถ€ํ„ฐ ํ›„๋ฐ˜๋ถ€์˜ ๋ ˆ์ด์–ด๋ฅผ Higher layer, ์ดˆ๋ฐ˜์˜ ๋ ˆ์ด์–ด๋ฅผ Lower layer๋ผ๊ณ  ํ•˜๊ฒ ๋‹ค.

    lower layer์˜ ๊ฒฝ์šฐ ์ด๋ฏธ์ง€์˜ ์ž‘์€ ๋ถ€๋ถ„๋งŒ์„ ๋ณด๊ณ , higher layer๋กœ ๊ฐˆ์ˆ˜๋ก ์ด์ „ ๋ ˆ์ด์–ด๋“ค์ด ๋ณธ ๋ถ€๋ถ„๋“ค์„ ๊ฒฐํ•ฉํ•ด์„œ ๋ณด๊ธฐ ๋•Œ๋ฌธ์— ๋ณด๋Š” ์˜์—ญ์ด ๋” ๋„“์–ด์ง„๋‹ค. ์ด๋•Œ ๋ ˆ์ด์–ด๋ฅผ ํ†ต๊ณผํ•œ ๋…ธ๋“œ๊ฐ€ ์ด์ „ ๋ ˆ์ด์–ด์—์„œ ๋ณธ ์˜์—ญ์„ Receptive field (์ˆ˜์šฉ ์˜์—ญ)์ด๋ผ๊ณ  ์ •์˜ํ•œ๋‹ค. 

    Receptive field๋Š” ๊ทธ feature๋ฅผ ์ƒ์„ฑํ•˜๊ฒŒ ๋œ ์ž…๋ ฅ์˜ ๊ตญ์†Œ์ ์ธ ํ”ฝ์…€ ๋ถ€๋ถ„(ํŒจ์น˜)์ด๋‹ค.

     

    ์ดํ•ด๋ฅผ ์œ„ํ•ด ์•„๋ž˜ ๊ทธ๋ฆผ์„ ๋ณด์ž.

     

    • ๋ชจ๋“  conv layer์— ๋Œ€ํ•ด ํ•„ํ„ฐ ํฌ๊ธฐ๋Š” ๋ชจ๋‘ 3x3๋กœ ๋™์ผํ•˜๋ฉฐ, stride = 1, padding =0 ๋ผ๊ณ  ๊ฐ€์ •

     

    Layer 2์˜ ์ž…๋ ฅ์ธ 5x5 feature๋Š” 3x3 ์ปค๋„์„ ํ†ต๊ณผํ•˜์—ฌ 3x3 feature๊ฐ€ ๋˜์—ˆ๋‹ค. 

    Layer 2์˜ $a_{4}$๋Š” Layer 1์˜ 3x3 ํŒจ์น˜๋ฅผ 3x3 ํฌ๊ธฐ์˜ ํ•„ํ„ฐ์™€ convolution ํ•˜์—ฌ ์ƒ์„ฑ๋œ ๊ฒƒ์ด๋ฏ€๋กœ, ํ•ด๋‹นํ•˜๋Š” Layer 1์˜ 3x3 ํŒจ์น˜๋Š” $a_{4}$์˜ receptive field๊ฐ€ ๋œ๋‹ค. 

     

     

    ํ•˜๋‚˜์˜ ๋” ์˜ˆ์‹œ๋ฅผ ๋ณด์ž๋ฉด, Layer 2 ์ด์ „์—๋Š” 7x7 ํฌ๊ธฐ์˜ feature๊ฐ€ ์žˆ์—ˆ์„ ๊ฒƒ์ด๋‹ค. (3x3 ํ•„ํ„ฐ๋ฅผ ํ†ต๊ณผํ–ˆ์„ ๊ฒƒ์ด๋ฏ€๋กœ)

     

     

     

    ์ž ๊ทธ๋Ÿผ ์—ฌ๊ธฐ์„œ Layer 3์˜ receptive field์˜ receptive field๋Š” ํฌ๊ธฐ๊ฐ€ ๋ช‡ ์ผ๊นŒ?

    $b_{6}$์˜ receptive field๋ฅผ ๋ณด๋ฉด ์•Œ ์ˆ˜ ์žˆ๋“ฏ, ์ •๋‹ต์€ 5x5 ์ด๋‹ค. 

     

     

    ๊ฒฐ๋ก 

    layer๊ฐ€ ๋” ๊นŠ์–ด์งˆ ์ˆ˜๋ก feature map์˜ ํ•œ ํ”ฝ์…€์€ ์ด๋ฏธ์ง€์˜ ๋” ๋„“์€ ์˜์—ญ์„ ๋‹ด๊ณ  ์žˆ๋‹ค.

    ์ฆ‰, ์—ฌ๋Ÿฌ๋ฒˆ ํ†ต๊ณผํ•˜๋ฉด receptive field๊ฐ€ ๋„“์–ด์ง„๋‹ค!


    < 3x3 convolution์„ ๋‘๋ฒˆํ•˜๋Š” ๊ฒƒ์˜ ์˜๋ฏธ >

    3x3 conv ๋‘๋ฒˆ์„ ํ†ตํ•ด 5x5 ์˜ receptive field๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. 

     

     

     

     

    layer 3์˜ $a_{4}$ ๋Š” ์ด์ „ ๋ ˆ์ด์–ด์˜ 3x3์˜ ์˜์—ญ์„ ๋ณด๊ณ , ๊ทธ ์ด์ „(layer 1)์˜ 5x5 ์˜์—ญ์„ ๋ณธ๋‹ค. (์ด์™ธ์˜ ์˜์—ญ์€ ๋ณด์ง€ ์•Š๋Š”๋‹ค!)

    ๊ทธ๋Ÿฌ๋ฉด layer 1์˜ ์ค‘์•™์— ์žˆ๋Š” 3x3 ์€ $a_{4}$ ํ”ฝ์…€์ด ์ด 2ํšŒ ๋ณด๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ๋ฐ”๊นฅ์˜ ์˜์—ญ์€ ํ•œ ๋ฒˆ๋งŒ ๋ณธ๋‹ค. 

    ๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ๊ฐ€๊นŒ์šด ๋ ˆ์ด์–ด๋Š” ์ง‘์ค‘ํ•ด์„œ ๋ณด๊ณ , ๋ฉ€๋ฆฌ์žˆ๋Š” ๋ ˆ์ด์–ด๋Š” ์—ฐํ•˜๊ฒŒ ๋ณธ๋‹ค๋Š” ์˜๋ฏธ์ด๋‹ค.

    ์ด๋Š” ๋‹ด๋‹น ์œ„์น˜๋ฅผ ๊ฐ€์žฅ ์ฐํ•˜๊ฒŒ ๋ณด๊ณ , ๋ฉ€์ˆ˜๋ก ์—ฐํ•˜๊ฒŒ ๋ณธ๋‹ค๊ณ  ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค.

     

     

     

     

     

    'AI\ML\DL > Deep learning theory' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

    Stochastic differential equation(SDE)  (1) 2023.12.05
    Insights for CNN  (0) 2023.09.13
    2D convolution (Conv2d) ๊ณผ์ •์˜ ์ดํ•ด  (0) 2023.05.28
    Batch Normalization  (0) 2023.05.11
Designed by Tistory.