ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • cyclic ordinal regression ํ•™์Šต๋ฒ•
    AI\ML\DL/๋…ผ๋ฌธ ๋ฆฌ๋ทฐ 2023. 7. 28. 21:29
    ๋ฐ˜์‘ํ˜•

    Ordinal Regression is a learning task for predicting a label (or rank) or the object, where the set of labels has a linear order, e.g., the set of integers.

    '์ˆœํ™˜ ํšŒ๊ท€'๋Š” ๋ ˆ์ด๋ธ”์˜ ์„ธํŠธ๊ฐ€ ์„ ํ˜•์  ์ˆœ์„œ๋ฅผ ๊ฐ€์งˆ๋•Œ (์˜ˆ๋ฅผ๋“ค๋ฉด ์ •์ˆ˜์˜ ์ง‘ํ•ฉ) ๊ฐ์ฒด์˜ ๋ ˆ์ด๋ธ” ๋˜๋Š” ๋žญํฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ํ•™์Šต ๋ฐฉ๋ฒ•์ด๋‹ค. 

     

    Ordinal Regression๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค. 

    - SVM

    - Gaussian processes

    - Perceptron learning

     

    Frank ์™€ Hall ์€ ordinal binary decomposition ๋ฅผ ์ œ์•ˆํ–ˆ๋‹ค.

    : ์ด์ง„ ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ ๊ฐ์ฒด์˜ ๋žญํฌ๊ฐ€ k๋ณด๋‹ค ํฐ์ง€ ์•„๋‹Œ์ง€ ๊ฒฐ์ •

    decision tree๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ง„ ์ถœ๋ ฅ์„ ๋žญํฌ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ–ˆ๋‹ค. 

     

    ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฉํ–ฅ์„ 8๊ฐ€์ง€ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” task๋ฅผ ์œ„ํ•ด Cyclic ordinal regression์„ ์‚ฌ์šฉํ–ˆ๋‹ค. 

    8๊ฐ€์ง€ ๋ฐฉํ–ฅ ํด๋ž˜์Šค (K classes, K=8, K๋Š” ์–ธ์ œ๋‚˜ ์ง์ˆ˜)

    : N (c0), NE(c1), E(c2), SE(c3), S(c4), SW(c5), W(c6), NW(c7)

    ์ธ์ ‘ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์˜ค์ฐจ๊ฐ€ ์•„์˜ˆ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์˜ค์ฐจ๋ณด๋‹ค ํ›จ์”ฌ ์ ๊ธฐ ๋•Œ๋ฌธ์— loss function ์— ์ด๋Ÿฌํ•œ cyclicํ•œ ์ˆœ์„œ๋ฅผ ๊ณ ๋ คํ•ด ์ฃผ์–ด์•ผ ํ•œ๋‹ค. (= COR Scheme)

    Binary Classifier

    $$ f_{0}(x)=\begin{cases}
    1 & \text{ if } y_x \in {c_{1}, c_{2}, c_{3}, c_{4}} \\
    0 & \text{ otherwise }
    \end{cases}$$

    $$ f_{1}(x)=\begin{cases}
    1 & \text{ if } y_x \in {c_{2}, c_{3}, c_{4}, c_{5}} \\
    0 & \text{ otherwise }
    \end{cases}$$

    $$ f_{2}(x)=\begin{cases}
    1 & \text{ if } y_x \in {c_{3}, c_{4}, c_{5}, c_{6}} \\
    0 & \text{ otherwise }
    \end{cases}$$

    $$ f_{3}(x)=\begin{cases}
    1 & \text{ if } y_x \in {c_{4}, c_{5}, c_{6}, c_{7}} \\
    0 & \text{ otherwise }
    \end{cases}$$

     

    ๋ ˆ์ด๋ธ”์˜ cycle ์ด ๋Œ€์นญ์ ์ด๊ณ  ์ฃผ๊ธฐ์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋‘ ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋ˆ„๊ธฐ ์œ„ํ•ด (์ด์ง„ ๋ถ„๋ฅ˜) ๋ถ„๋ฅ˜๊ธฐ์˜ ๊ฐœ์ˆ˜๋Š” K/2 ๊ฐœ ๋งŒํผ ํ•„์š”ํ•˜๋‹ค.

    ์ฆ‰, ๋ถ„๋ฅ˜๊ธฐ๋Š” $f_{0}, f_{1}, f_{2},\cdots f_{\frac{2}{K}-1}$ ์™€ ๊ฐ™์ด ์กด์žฌํ•  ๊ฒƒ์ด๋‹ค. 

     

    ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ํ•™์Šตํ•  ๋•Œ example $x$์˜ ground truth label ์ด ์ฃผ์–ด์ง€๋ฉด $f_{n}$ ์ด ๋ถ€์—ฌ๋œ๋‹ค. 

    $$k^{*}=\underset{k\in C}{\textrm{argmax}}\sum_{n=1}^{K/2}f_{k-n}(x)$$

    ์ฆ‰ ์‹œ๊ทธ๋งˆ๋ถ€๋ถ„์„ ์ตœ๋Œ€ํ™”์‹œํ‚ค๋Š” k๊ฐ€ ๊ณง ์ •๋‹ต๊ณผ ๊ฐ€๊นŒ์šด ํด๋ž˜์Šค๋ฅผ ๋œปํ•œ๋‹ค. (maximum likelihood ์•„์ด๋””์–ด์™€ ์œ ์‚ฌ)

     

    training ๋•Œ์™€ ๋‹ฌ๋ฆฌ test ๋•Œ๋Š” f๊ฐ€ 0๊ณผ 1์‚ฌ์ด์˜ softmax probability(confidence value)๋ฅผ ์ƒ์‚ฐํ•˜๋„๋ก ํ•˜๊ณ  ์ด ๊ฐ’์„ ํ†ตํ•ด ๊ฐ€์žฅ ์ ํ•ฉํ•œ k๊ฐ€ ์„ ์ •๋œ๋‹ค. 

     

    ์˜ˆ๋ฅผ๋“ค์–ด, ์ด ๋ฐฉํ–ฅ์˜ ๊ฐœ์ˆ˜๊ฐ€ 8๊ฐœ์ธ ์ƒํ™ฉ์—์„œ $k^{*}$ ๋Š”

     

    $$\begin{eqnarray} \sum_{n=1}^{K/2}f_{k-n}(x)&= f_{0}+f_{1}+f_{-1}+f_{-2}\\ &= f_{0}+f_{1}+1-f_{3}+1-f_{2}\\ &=1+1+1+1=4 \end{eqnarray}$$

     

    ์ฆ‰, ์œ„์‹์„ ์ตœ๋Œ€๋กœ ๋งŒ๋“œ๋ ค๋ฉด $f_{0}, f_{1}$ ์˜ ๊ฐ’์ด 1์ด ๋˜์–ด์•ผ ํ•˜๋ฏ€๋กœ ์ด๋ฅผ ๋™์‹œ์— ๋งŒ์กฑํ•˜๋Š” k=2 ๋งŒ์ด ๋งž๋Š” class๊ฐ€ ๋˜๋Š” ๊ฒƒ์ด๋‹ค. 

    'AI\ML\DL > ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

    Inception Net (2014.09)  (0) 2023.09.17
    VGG Net (2014.09)  (0) 2023.09.16
    SSD: Single-Shot Multibox Detector  (0) 2023.08.24
    Super resolution (SR) technique  (1) 2023.06.17
Designed by Tistory.